Recon Core subproject I1I

MRI Reconstruction Using Graph Cuts:

Ashish Raj, Weill Cornell Medical College New York

*A new graph-based algorithm *
/nspired by advanced robofic vision, computer science

= Operations on this graph produce reconstructed image!

*Raj et al, Magnetic Resonance in Medicine, Jan 2007,
*Raj et al, Computer Vision and Pattern Recognition, 2006
*Singh et al., MRM (to appear)



Project Summary

Aim1: To apply EPIGRAM to fast high-resolution
structural brain imaging

— Image priors to be empirically evaluated

Aim 2: Extending the method from 2D to 2D +
time data

Aim 3: Validation

Aim 4: Developing new efficient, feasible Graph
algorithms

Significant advances were made in all aims (except Aim 3)
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Least squares solution
= [east squares estimate:
GEP).E@)=arg min Y [y@)—s@e@)—s (@)
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—Famous MR algorithm: SENSE (1999)

= Linear system
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EPIGRAM Summary
= Finds the MAP estimate

T =argmin E(xz) = [lly — Hz||? + )«G@)}

Makes x piecewise smooth

Makes Hx close to y

Potts function

= Used Markov Random Field priors T o
G(.CU) — Z V(.’Bp — .CUq) —— =,
(p,a) EN

-If V “levels off”, this preserves edges

Robust



New Developments (I):
=  Extension of EPIGRAM from 2D to 3D
= Phase-constrained reconstruction

Phase Constrained EPIGRAM: Reff = 4.5

Reference:
Sum of squares

Fast EPIGRAM Regularized SENSE



New Developments (II):
= Fast EPIGRAM — uses “jump moves” rather than “expansion moves”
=Up to 50 times faster!

New, Faster Graph Cut Algorithm: Jump Moves
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*Reconstruction time of EPIGRAM (alpha expansion) vs Fast EPIGRAM (jump move)
- after 5 iterations over [32, 64, 128, 256, 512] gray scale labels
- Image size 108x108 pixels.

« Linear versus exponential growth in in reconstruction time



Jump Move Results: Cardiac Imaging, R=4

ereconstruction for cine SSFP atR = 4

Reference:

Regularized SENSE
Sum of squares
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New Developments (III):

Automatically Learning Image Priors

* The most important aspect of
EPIGRAM is choice of prior

* What is the most appropriate
prior model?

« Recon performance depends
crucially on prior model

*Recall:

G(z) = Z V(zp — xq)
(p,q)EN,

Form of V
determines
recon image
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New Developments (III):

Automatically Learning Image Priors

« New idea: automatically learning what prior model best fits brain MRI
 Generalization of edge-preserving Gibbs priors successful in EPIGRAM
» Define a class of prior distributions =» mixture of various powers
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Learning Image Priors: Technique

« Used Markov chain Monte Carlo (McMC) technique to learn unknown
parameters of prior model

* McMC sampling is based on Metropolis-Hastings algorithm

» After 1000s of iterations, gives a posterior distribution of the model

 We use the maximum of this inferred posterior

Histogram of various exponents “visited” by McMC sampler




Learning Image Priors: Results

 Found a strong maximum of posterior
* Inferred model: exponent = 0.5, cutoff = 25

Cost Functions, Top 10% Post. Prob, T =1

exponent |
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We believe this prior will be superior to previous prior
Results on brain data awalited




Learning Image Priors: Simulations

 Shepp-Logan head phantom with different noise and blur (PSF)
 Width of Gaussian blur kernel: 0, 2, 4, 6, 8, 10, 20
* Inferred model should depend on size of blur

* (more blurry image =» higher exponent)
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Figure 1: The different images corresponding to the different widths of Gaussian
blur.



Learning Image Priors: Simulations

Result: found almost linear dependency

Blur Width | Parallel Tempering, T' = 1 | Regular Sampling, T = 1
0 min(4d, 57.70)"-2 min(d, 55.67)%°
2 min(4d, 17.57)"* min(4, 16. 1(’]"”’
4 min(d, 7.79)"7 min(4, 7.77)""
G min (4, 4.46)"! mlniﬁ?ul.uli )U-d
S min(4d, 3.14)"° min(4, 3.07)1
10 min(d, 2.24)57 min(d,2.21)4"
20 min(4, 1.93)%% min(4,1.91)17
Brain MRI min(d, 11)"° min(4, 11.67)"°

Table 1: The estimate of the MAP for the 7 different blurred Shepp-Logan

Phantoms, as well as brain MR images.




New Developments (IV):
= New graph cut algorithm to replace EPIGRAM — does not use
expansion moves at all
= Expect 0(10-100x) computational speed up
= Based on exploring null-space of system matrix H

E(z) = |lly - Ha|? + AG ()]

e Let D = null(H), x, be any solution to y = Hx

eLetx =X, + Dx. Theny - Hx =y - H x, and E(x) = 1G(7)
*Henceforth we seek graph cut moves on # rather than x

« Since nullspace 1s much smaller than space of X, this is much more
efficient



